Products of Prime Powers in Binary Recurrence Sequences Part I: The Hyperbolic Case, with an Application to the Generalized Ramanujan-Nagell Equation
نویسندگان
چکیده
We show how the Gelfond-Baker theory and diophantine approximation techniques can be applied to solve explicitly the diophantine equation C„ = wpTM< ■ ■ ■ p"< (where {G„}^_o is a binary recurrence sequence with positive discriminant), for arbitrary values of the parameters. We apply this to the equation x2 + k = p\' ■ ■ ■ pf', which is a generalization of the Ramanujan-Nagell equation x2 + 7 = 2~. We present algorithms to reduce upper bounds for the solutions of these equations. The algorithms are easy to translate into computer programs. We present an example which shows that in practice the method works well.
منابع مشابه
Products of Prime Powers in Binary Recurrence Sequences
We show how the Gelfond-Baker theory and diophantine approximation techniques can be applied to solve explicitly the diophantine equation G, = wp" ... p', (where (G,, }I='o is a binary recurrence sequence with positive discriminant), for arbitrary values of the parameters. We apply this to the equation x2 + k = ... ps', which is a generalization of the Ramanujan-Nagell equation x2 + 7 = 2Z. We ...
متن کاملA generalized Ramanujan-Nagell equation related to certain strongly regular graphs
A quadratic-exponential Diophantine equation in 4 variables, describing certain strongly regular graphs, is completely solved. Along the way we encounter different types of generalized Ramanujan-Nagell equations whose complete solution can be found in the literature, and we come across a problem on the order of the prime ideal above 2 in the class group of an imaginary quadratic number field, w...
متن کاملOn generalized Lebesgue-Ramanujan-Nagell equations
We give a brief survey on some classical and recent results concerning the generalized Lebesgue-Ramanujan-Nagell equation. Moreover, we solve completely the equation x + 1117 = y in nonnegative integer unknowns with n ≥ 3 and gcd(x, y) = 1. 1 Generalized Ramanujan-Nagell equations Mixed polynomial-exponential equations are of classical and recent interest. One of the most famous equation of thi...
متن کاملSome Ramanujan–Nagell equations with many solutions
If we fix y as 1 in (1) we obtain a Ramanujan-Nagell equation. In [4] Erdös, Stewart and Tijdeman proved that the exponential dependence on s in estimates (2) and (3) is not far from the truth by giving examples of Ramanujan-Nagell equations with many solutions. Let ε be a positive number, let 2 = p1, p2, . . . be the sequence of prime numbers and let n be an integer with n ≥ 2. They proved tha...
متن کاملRamanujan-nagell Cubics
A well-known result of Beukers [3] on the generalized Ramanujan-Nagell equation has, at its heart, a lower bound on the quantity |x2 − 2n|. In this paper, we derive an inequality of the shape |x3 − 2n| ≥ x4/3, valid provided x3 6= 2n and (x, n) 6= (5, 7), and then discuss its implications for a variety of Diophantine problems.
متن کامل